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fortunately, I think without realising this much, in 
many essential ways to scientific life we were prepared 
to cope with this. Although virtual environments and 
activities cannot replace the hum of people working 
together in groups, it has meant one has still been able 
to share work done, hold discussions with each other 
and students, connect to those far away, and extend 
the time one would normally spend alone or in small 
groups thinking about problems, to activities normally 
face to face, but now with a laptop connecting to the 
group.

Researchers at AIMS are working on and have 
contributed to a number of interesting problems, 
some very relevant to the situation we find ourselves 
in at present. This report presents some of their work, 
which gives a picture of what has been done in the 
ARC recently, especially since lockdown. It is a pleasure 
to thank all who have contributed. We hope those 
reading will enjoy finding out what our colleagues and 
research students have been doing, which may lead to 
interaction too.

Welcome to the latest edition of the ARC Report.

The Research Centre at AIMS South Africa is normally 
a vibrant active place. Researchers and visitors spend 
most of their time there, from mid-morning until late 
at night. Offices are shared, often with three visiting 
researchers  in the same office. Blackboards are filled 
with formulae and math arguments. There are tea-
time discussions, seminars a journal club, workshops 
and Postdocs, PhD and Research Masters students 
working on projects.  They are around and all wander 
across the road from the AIMS Research Centre to 
our Main Building to have lunch with the rest of the 
AIMS family, roughly 120 people, on any weekday.  
The many workshops organised bring local and 
international scientists and students together, so that 
the atmosphere is even more lively and focussed, and 
all have the feeling this is a special worthwhile place to 
be.

Now it is all virtual, COVID 19 has jolted us, as it has 
every other facet of life worldwide. No science, or 
science in silence might be what one expects, but 

Prof. Bary Green, Director
Editor's  Note
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In light of the crisis caused by the Coronavirus, a few of our researchers have taken the 
opportunity to conduct research into various aspects of the disease and its implications.

Authors: Hendrik Petersen, Bubacarr Bah, Peter Jung

In compressed sensing the goal is to recover a signal from 
as few as possible noisy, linear measurements.The general 
assumption is that the signal has only a few non-zero 
entries. Given an estimate for the noise level a common 
convex optimization approach, Basis Pursuit (BP) De-noising 
(BPDN) is used to recover the signal. In the case of unknown 
noise levels, non-negative least squares (NNLS) recovers 
non-negative signals if the measurement matrix fulls some 
properties. However, if the measurement matrix is an 
expander matrix or a bi-adjacency matrix of a random left 
regular bipartite graph, we denote as D-LRBG, it fails to 
obey some of these properties. In this setting  ℓl-constrained 
least residual (CLR) could be used. However, we propose 
a non-negative least absolute deviation (NNLAD), see (3). 
For these measurement matrices, we prove a uniform, 
stable and robust recovery guarantee with NNLAD. Such 
guarantees are important, since binary expander matrices 
are sparse and thus allow for fast sketching and recovery. 
Our implementation of the NNLAD shows that this is 
comparable to state of the art methods. Coincidentally, 
NNLAD can be used for group testing, which is necessary 

in the recent COVID-19 crisis, where contamination of 
specimens may be modelled as peaky (or sparse) noise. 
We argue that the lack of knowledge of the noise in such 
testing favours the NNLAD recovery method over a BPDN 
approach. Further, since the total sum of viruses in all 
patients is unknown, it is undesirable to use CLR. 

With the outbreak and rapid spread of the COVID-19 virus, 
we are in the need of testing a lot of people for an infection. 
Since we can only test a fixed number of persons in a given 
time, the number of persons tested for the virus grows at 
most linearly. On the other hand, models suggest that the 
number of possibly infected persons grows exponentially. 
At some point, if that is not already the case, we will have 
a shortage of test kits and we will not be able to test every 
person. It is thus desirable, to test as much persons with 
as few as possible test kits. The field group testing develops 
strategies to test groups of individuals instead of individuals 
in order to reduce the amount of tests required to identify 
individuals with a certain property. The first advances in
group testing were made by Dorfman in 1943. 

COVID-19 RESEARCH

NNLAD algorithm for robust COVID-19 testing
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The problem of testing a large group for a virus can be modeled 
as a compressed sensing problem in the following way. Suppose 
we want to test N persons, labelled by [N]= {1,...,N}, to check 
whether or not they are affected by a virus. We denote by 
𝓍𝑛 + e𝘴𝘱𝑒 the quantity of viruses in the specimen of the 
𝑛-th person, where 𝓍𝑛 is the amount of viruses originating 
from the test person and e𝘴𝘱𝑒 is a the quantity of viruses 
originating from a possible contamination of the specimen. 
Suppose we have M test kits, labelled by [M] = {1,...,M}, 
typically M < N. By 𝓎𝑚 we denote the amount of viruses in 
the sample of the 𝑚-th test kit. Consider an MxN matrix,  
A∈ [0; 1]M 𝗑 N. For every 𝑛 we put a fraction of size A𝑚,𝑛 of 
the specimen of the 𝑛-th person into the sample for the 𝑚-th 
test kit. The sample of the 𝑚-th test kit will then have the 
quantity of viruses

where e𝘱𝘳𝘰 is the amount of viruses in the sample from a 
possible contamination of the sample. Usually, when using a 
test kit the viruses are duplicated multiple times, for instance 
with a polymerase chain reaction. The test kit will then detect a 
known, bijective transformation of each individual component 
𝓎𝑚. Hence, we can calculate 𝓎𝑚 directly and thus assume 
that 𝓎𝑚 is the result of the test. After all M tests we detect the 
quantity  

where y and e = Aespec+ epro are M-dimensional vectors and 
x is an N-dimensional vector. For now we assume that e is 
peaky and we will later argue why such a model is natural to 
assume.

Often each specimen is tested separately, meaning that A 
is the identity. In particular, we need at least as much test 
kits as specimens. Further, we estimate the true quantity of 
viruses 𝓍𝑛 by 𝓍𝑛 := 𝓎𝑛, which results in the estimation error 
𝓍𝑛 − 𝓍𝑛 = e𝑛 =  espe + epro. In this scenario the estimation 
error for the n-th person is only affected by the errors made 
while taking its specimen and testing its sample. Since the 
noise vector e is peaky, some but few tests will be inaccurate 
and might result in false positives or false negatives. In 
general, only a fraction of persons is indeed affected by the 
virus. Thus, we assume this number is less than S, for some 
small S. Since the amount of viruses is a non-negative value, 
we also have x ≥ 0. Our theory suggests to choose A as an 
expander matrix or to choose A as a D-LRBG matrix. Such a 
matrix A has non-negative entries and the column sums of 
A are not greater than one. This is a necessary requirement 
since each column sum is the total amount of specimen used 
in the test procedure. Precisely, a fraction of D−1 of each 
specimen is used in exactly D test kits.

In order to calculate an estimation to the true quantity of 
viruses x we propose to use the NNLAD. To be precise the 
NNLAD solution is given by

Our theory shows that this allows us to reduce the number 
of test kits required to M = CS log (N/S) for some constant 
C. Further, as we have seen in Figure 1, the approximation 
error is incredibly small since the noise e is peaky. In this 
manner, the estimation will even be more exact than by
testing each specimen separately.

                                        y = Ax + e,                                               (2)

#

#

         x# = argmin ‖ Az – y ‖1                                                   (3)

Figure 1: Performance of NNLAD for noise with peaky mass 
and varying noise power. Top: The NNLAD outperforms the 
NNLS. Bottom: The estimation error does not scale linearly 
with the noise power.

It remains to argue, why a peaky noise model is natural for 
the problem of testing a large group for a virus. In general, 
the sample of the 𝑚-th test kit will be affected by the noise 
epro ≠ 0 if for instance the sample is contaminated by a 
specimen of a different person or a laboratory employee.
Due to the caution and expertise of members in the health 
care system, this is a rare occasion, but when it happens the 
effect will be rather strong. Thus, it is natural to assume that 
epro is peaky. Similarly, the specimen of the 𝑛-th person is 
affected by the noise espe under similar circumstances.
Thus, it is also natural to assume that espe is peaky.

If we test each specimen separately it follows that  
e = espe+ epro is peaky. On the other hand if A is a D-LRBG, 
the sample of the 𝑚-th test kit is affected by the noise of 
the 𝑛-th specimen if and only if A𝑚,𝑛 ≠ 0. Since, there are 
exactly D non-zeros per column, exactly D samples are 
affected by the noise of the 𝑛-th specimen, i.e. by D–1espe. If 
𝑛e denotes the number of components of espe with signicant 
absolute value and 𝑚e  denotes the number of components 
of  epro with signicant absolute value, then the number of 
components of e with signicant absolute value is at most 
D𝑛e+ 𝑚e. If D is sufficiently small, as it is required the noise 
will be peaky.

𝑚

𝑛

𝑛

𝑛𝑛

                  𝓎𝑚  = � A𝑚,𝑛 (𝓍𝑛 + espe)+ epro,                       (1)
𝑛∈[N]

𝑚𝑛

𝑛

𝑛

z≥0
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Authors: Richard Armstrong, Bruce Bassett, Nadeem Oozeer and Felix 
Silwimba; as part of the SARAO Data Science team's work for the  
National Ventilator Project.

"All models are wrong, but some are useful" - George Box, 
British statistician

Predicting deaths from COVID-19 is hard: in the first few 
days of June 2020, the disease had killed 45 people in Qatar 
but 9522 in Belgium, yet Qatar - with 62,160 infections - had 
about 3500 more cases than Belgium. That is a ratio of about 
200:1 in deaths, yet both countries had tested about 80,000 
people per million of the population.

Predicting future COVID deaths is hard; or as Koos Bekker 
recently opined about general COVID-19 forecasts, "Only 
mamparas will try to predict the outcome of catastrophes."

With this in mind how many deaths should we expect in 
South Africa, and how accurately do we think that anyone 
can predict the final death toll? There have been optimistic 
suggestions that the total number of deaths will be low: in 
particular claims of 59,300 (here), 48,000 here and 30,000-
50,000 (here; though the latter, for example, included many 
caveats about unmodelled uncertainties). If these projections 
turn out to be true it would be great news given that early 
projections were that over 300,000 South Africans might die, 
so let's indeed hope they turn out to be correct.

Unfortunately unjustified hope can be negative. The low 
death forecasts may give the impression that COVID-19 is 
guaranteed to only kill a relatively small number of South 
African's no matter what the public or government do for the 
rest of 2020 and 2021. One might be tempted to argue that if 
less than 50,000 people are going to die no matter what, then 
why should one bother to social distance, wear a mask or 
work from home?

Instead in this article we will attempt to convince you that:
1. it is currently impossible to predict the final death toll 

with any accuracy, and
2. it is still very possible that there will be more than 

100,000 total deaths in South Africa over the next two 
years from COVID-19. Further, the original 300,000+ 
death toll must still be considered a realistic possibility.

Before we get into serious modelling let's start by addressing 
an argument that goes something like this:

"How can we expect over 100,000 deaths in South Africa when 
Italy/Spain/(insert your favourite 1st world country) have only 
had 34,000/27,000/etc... deaths and they have been hit much 
harder than us?"

The counter to this is straight-forward. First, South Africa 
is not a 1st world country and is no stranger to massive 
infectious disease death tolls: HIV deaths alone were 

estimated to exceed 250,000 a year for several years around 
2006, and HIV is still a massive cause of death today. 
Further, our lockdown has not managed to bring the spread 
of the disease under control as it did in the first world: on 
14th June we had the highest percentage of new cases in the 
world.

Second, let's wait and see what the total deaths in Italy/
Spain/your favourite country are in January 2021 or 2022. 
History is full of sports matches where teams who were 
winning in the first quarter ended up losing badly by the end 
of the match. We simply don't yet know how long COVID-19 
is going to be with us. It could be months if we develop 
effective treatments or a vaccine quickly, or it might last 
years if we don't. While the disease is with us, we should 
expect multiple waves of infections. As an example, have a 
look at daily cases in Iran who are just going through their 
second wave:

Iran is not alone in experiencing a 2nd wave: we must not 
forget just how extremely infectious COVID-19 is.

The fact that we don't really have any idea how long 
COVID-19 will be with us should already suggest that 
accurate long-term predictions are going to be difficult 
to make. If this sounds hard to believe, please reread the 
opening lines of this article and try to imagine predicting the 
Qatar and Belgium deaths today back in early March when 
both countries had less than 5 known cases each. As was this 
example, we will try to convince you that we cannot now 
predict the eventual number of deaths in South Africa that 
will occur over the next two years to better than about 50x. 
In other words, 10,000 and 500,000 deaths, and everything in 
between, are still possible final death tolls for South Africa 
due to COVID-19. Such long-tails are a known issue for 
epidemics.

This huge uncertainty is a bitter pill to swallow, so we invite 
you to stay critical, but open minded, while we work through 
the evidence.

Long Term COVID-19 Forecasts for South Africa
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Understanding the original predictions
First let's understand where the original predictions of 
around 300,000 deaths came from and why they are pretty 
robust.

Predicting final deaths for a disease is easy in principle: 
you just multiply the average Infection Fatality Rate (IFR; 
the probability of dying given infection) by the final total 
number of infections in the country: if 1 out of 100 people 
dies on average, and 100,000 people get infected, we would 
expect 1,000 people to die.

So how many infections should we expect in total in South 
Africa? The standard epidemiological answer to this is 
provided by the following curve which gives the final "herd 
immunity" fraction of infections in the population:

Figure 1 links the proportion of the population who are  
expected to be infected given enough time to the reproductive 
number, Rt, a crucial quantity that we will need for all our 
forecasts. Rt is defined to be the average number of people 
an infected person will in turn pass the infection on to 
(think of John infecting Bob, Mary and Sizwe, yielding Rt 
= 3). It is important to note that the reproductive number 
is an average and that it changes with time, so it is useful 
to distinguish its initial value (R0 - when it starts spreading 
and no one knows about the disease) and its value at a later 
time, t, denoted by Rt. The value of R0 can be more than 10 
for some diseases like the measles or mumps and is around 
0.9-2.1 for influenza.

So for flu you usually infect just 1-2 other people but for 
COVID-19 R0 is estimated to be between about 2 and 6, 
so looking at Figure 1 we see that if nothing were done, 
we would expect at least 80% of any population to become 
infected with COVID-19 before the disease naturally stopped 
spreading, due to the fact that it becomes less and less likely 
that an infected person will come into contact with someone 
who has not had the disease yet (assuming that recovering 
from COVID-19 confers some immunity). For South Africa 
this would mean about 48 Million infections in the end.

Now, the great thing about being intelligent beings is that we 
humans can change our behaviour in response to a disease. 
We can educate ourselves, share advice, wear masks, wash 

Figure 1: predicted fraction of population infected as a 
function of reproductive number, Rt. It predicts about 60% 

of the population will be infected if Rt = 1.5 and about 80% 
infections for Rt = 2.

our hands, stop kissing, practise social distancing and so 
on. This all has the effect of reducing Rt over time, which 
reduces the final numbers of infections. The problem is, 
unless it has eradicated the disease, as soon as a country 
goes back to "normal", the exponential spread of the disease 
returns (as in Iran) and we should expect to head towards 
the relevant herd immunity limit shown in Figure 1. 

In the absence of a vaccine, it is hard to keep Rt much lower 
than R0 for long periods of time since this typically requires 
severe measures such as lockdown and closing of schools 
that have dire economic consequences. As a result, unless 
a country can eliminate the disease relatively quickly - as 
New Zealand currently appears to have done for example - 
they must expect a protracted dance with multiple waves of 
infections.

In South Africa we have so far not been able to achieve and 
sustain Rt < 1 (like many other developing countries but 
unlike most 1st world countries). As a result, eradicating the 
disease will be hard, though we hope not impossible. If we 
assume we can keep Rt to around 1.5, then we would predict 
about 60% of South Africa would get infected, i.e. around 
36M people.

How many deaths will that cause? Well the Infection Fatality 
Rate (IFR) is still poorly known. In the early days the best 
data came from the Chinese CDC which found that about 
2.3% of their positive test cases died. This is a worst-case 
scenario since there are many infections that are missed and 
not tested. Using the China CDC data leads to predictions for 
South Africa of about 4800 deaths per 1% of the population 
infected and hence about 288,000 deaths if 60% of South 
Africa were infected (Note that because of SA's young 
population only about 0.8% would die using the Chinese 
CDC Case Fatality Rates).

Fortunately we now know that the Infection Fatality Rate 
(IFR) is significantly less than 2.3% in general because of 
the large number of asymptomatic infections and infections 
that go undetected due to the limited testing capacity in 
most countries. Best estimates for the average IFR are 
now somewhere around 0.3%-1.4% with the lower limit 
coming from updated numbers from New York City, Madrid 
and Lombardy. Seroprevalence studies in Spain suggest 
that about 5.2% of the population have been infected, or 
about 2.4M people. Given that Spain has had about 27,000 
confirmed deaths by mid June, this would put the average 
Spanish IFR at about 1.1%. Unfortunately this doesn't 
include missing untested deaths either directly or indirectly 
due to COVID-19, which could increase the IFR by up to 
50%. In South Africa there is no sign yet of excess mortality 
but there is in the Western Cape.

What should we expect the South African IFR to be on 
average? There are a number of key points to consider: 
1. South Africa's health care system has limited ICU 

facilities. If you really need ICU care and don't get it, 
the probability of survival is small. This has already 
been an issue in hard hit places like Italy, Spain and 
New York.

2. We have about 8M HIV infections, a high TB burden 
and a high proportion of hypertension, obesity and 
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malnutrition. We do not know yet for sure how HIV or 
the others will affect the IFR for South Africa.

3. South Africa has a young population (only about 5% 
over 65 years of age) and young people typically have a 
significantly lower IFR than those over 70.

First world countries have a double advantage over 
developing countries when it comes to critical care: their 
lockdowns work more effectively, flattening the curve and 
reducing pressure on ICU facilities and they typically start 
with more ICU beds per capita and have greater capabilities 
to rapidly increase their numbers of ICU beds. South Africa 
has in the region of 3000-4000 ICU beds including both 
private and public hospitals. Even the moderate estimates 
predict peak ICU bed demand exceeding 20,000. Our models 
predict peak demand could hit 50,000+ which will push up 
the South African IFR significantly as we discuss later.

Preliminary data from the Western Cape shows that HIV is 
likely to be a significant factor in South African COVID-19 
deaths, with a hazard ratio approximately double that of 
hypertension, which is a well-known major COVID-19 
comorbid condition. For people under 50, HIV was the 2nd 
most common comorbidity after diabetes. Consider also 
infant deaths. So far the Western Cape already has 2 younger 
than five years old, while New York only had 4 deaths under 
10 years of age in total out of more than 24,000 deaths.

The bottom line is that we really don't know what the final 
South African average IFR will be, even if we assume that 
there is only one important strain of COVID-19, which 
now looks less and less likely. That means that even if we 
knew the number of infections perfectly, we are not able to 
currently predict final deaths to within a factor of 2-3.

So now lets move on to the problem of predicting the final 
number of infections.

To make precise predictions we need to know our friend Rt 
for all times over the next year or two. One way to think of 
Rt is that it is the product of three terms: (1) the probability 
an infected person will infect someone in a single meeting, 
(2) the average number of people the infected person meets 
per day and (3) the number of days they are infectious. 
And we need to know these three factors for the next 12 
months and beyond if we want to predict the total number of 
infections accurately. A tough ask...

To predict Rt accurately we would need to know what 
lockdown level the country will be in every month for the 
next 12 months and also how well the community will 
comply with the lockdown levels. Just because for example 
the government mandates a level 5 lockdown doesn't 
mean people will necessarily comply! Further, we need to 
know how much of a factor winter will be in the spread 
of the disease, how many infections we are missing due to 
limited testing, whether mask usage, contact tracing and 
quarantining will be effective, and whether there are other, 
more transmissible strains circulating. We also don't know 
if blood type will play a role, or whether people will have 
partial immunity due to previous exposure to the commonly 
circulating coronaviruses (the non-novel ones). None of these 
factors are known accurately now. So how should we proceed?

One approach could be to simply take our best guess at what 
Rt will look like for the next 12 months. That will certainly 
give us a precise total number of deaths, but should we 
believe the answer? I could tell you that you have 52,835,834 
hairs on your head. That is a very precise answer but it is 
probably not at all accurate. One way to check is to make 
lots of reasonable guesses at Rt and see how much our final 
answers change. If they change a lot we probably shouldn't 
have much confidence in our guess. So let's do that. A few Rt 
curves might look like this:

We choose Rt to start around 1.3-1.6 (since that corresponds 
to April and May where we have observational data) and 
then allow it to jump up/down depending on whether one 
thinks that the lockdown level will go down/up, whether 
winter will have a big effect or masks will be widely used or 
be effective etc... Note that when Rt < 1, the daily cases are 
declining while when Rt > 1 implies that the daily infection 
numbers will increase (as they have since April to the 
current date, 12 June). Note that testing plays a crucial role 
here - if you reduce testing efficiency it may look like Rt < 1 
even if, in fact, Rt > 1.

But this small number of scenarios doesn't give us enough 
feeling for the full range of possible futures. Instead, let's 
make 2000 such curves. Each one of them represents a 
possible future, a kind of parallel universe that we might 
find ourselves in over the next year that is consistent with 
our current uncertainties about COVID-19, the choices of 
the South African government and people over the next 12 
months, etc...

Then we get something like this:

Figure 2: 25 example curves for the evolution of Rt over the 
next year

Figure 3: 2000 simulated Rt curves used for our ensemble over 
time. They include a death-dependent cutoff on Rt mimicking 

how people will naturally act in their own best interest as 
deaths increase, which is why the curves narrow down around 

1 over time.
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The white line represents the median value, while the yellow 
and black lines give the 68% and 95% limits across our 2000 
simulations. Note that these 2000 models include a range of 
pessimistic (Rt > 2), "average" (1 < Rt < 2) and optimistic 
(Rt < 1) scenarios reflecting the unavoidable uncertainties 
about the future progression of the disease in South Africa. 
However, the relative balance between optimistic/average/
pessimistic scenarios is not God-given: we still have to make 
a best guess about the range of possible Rt behaviours that 
can happen, and this moulds the range of scenarios. As time 
goes by we will learn whether they were appropriate. That is 
one of the reasons we have released the code: so you can put 
in your own beliefs and see what the implications are.

So what do these Rt curves predict? Each one can be run 
using a compartmental model which follows the flow of 
people from susceptible through infected and ending either 
recovered or dead. All the details are available in our report, 
but the main results are contained in this "horse-tail" plot:

Each panel shows 2000 curves, one for each Rt curve above, 
starting from 1 April (day 0) and running for 365 days, 
shown on a log scale.

The important features that you should take away from this 
plot:
1. There is a huge amount of uncertainty in all quantities: 

including the final number of deaths, the date 
and magnitude of the peaks in critical (ICU) and 
hospitalisation and the total number of infections.

2. Most of our models, starting from 1 April, under 
predicted the observed deaths in April, May and early 
June (see the black line in the top right panel). We 
discuss this more below.

3. The median number of final deaths in our simulations 
was about 140,000. That means half of our models 
ended up with more than 140,000 deaths.

4. A significant number of our simulations had a lot of 

Figure 4: 2000 simulations starting from 1 April 2020 (day 0) in 
South Africa and running until the end of March 2021, showing 
total cases and deaths, and numbers of critical & hospitalised. 
The white lines represent the median values at each time. The 

black line in the cumulative deaths (top right) shows the actual 
South African deaths to June 5. The plots are logarithmic with 

final deaths (on day 365) running from a few thousand to 
around 700,000.

deaths in the first three months of 2021. We must be 
careful not to let our guard down even if we have a good 
2020.

5. Although there were a few percent of simulations with 
large numbers of deaths (over 400,000) there were also a 
few percent of simulations with less than 10,000 deaths, 
representing models in which we are able to bring Rt < 
1 and keep it there. The range is very wide.

The latter point is broadly consistent with the CMMID 
analysis of Low and Middle Income Countries projection of 
41,000 to 290,000 deaths in South Africa, though their range 
is somewhat smaller than ours since their treatment of Rt is 
significantly simpler.

One critical point, which is actually another manifestation 
of our main result, is that our range of deaths (from 3,000-
700,000), and our median (140,000 deaths), are themselves 
sensitive to assumptions. Think that we have been too 
generous on the lower bound of the IFR? Then the lower 
estimate jumps up. Think that the range of infectiousness 
period or asymptomatic fraction are wrong? Then the upper 
bound jumps above 1M or below 400,000. This is all just 
more grist to the mill of uncertainty: forecasting is hard.

Let's quickly address the issue of why our simulations, 
starting from 1 April, are mostly under predicting actual 
South African deaths in April, May and June in Figure 
4. Below is the distribution of IFR values in our 2000 
simulations both with (red) and without (black) explicit 
modelling of ICU overwhelm.

25% of scenarios had an IFR < 0.2% in the no-ICU 
overwhelm case. Given that HIV appears to be a significant 
comorbidity for COVID-19 it is likely that this range of IFR 
values is actually excluded in South Africa. Or it may be a 
transient effect, driven by our assumptions about Rt which 
are too tightly constrained at early times, or it may be that 
we have more undetected cases than our simulations allow 
for. It is something we will keep track of over the next few 
weeks, but doesn't affect our main conclusions.

Perhaps you are skeptical about all studies predicting 
large numbers of deaths or large uncertainties for South 
Africa? Part of our high numbers are driven by the current 
uncertainties about the properties of the disease, part by 
ICU overwhelm (which we discuss below) and part by 
uncertainties about Rt, as we discussed above. Let's briefly 
chat about the first issue. There are a lot of parameters that 
go into making a prediction: a lot have to do with severity: 
the fraction of asymptomatic patients, the percentage of 
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So consider this one instead: COVID-19 may have started 
spreading in 2019 or perhaps it could have been 2014 or 
1998. What matters is when it mutated to become highly 
transmissible (where Rt is much larger than 1) and that 
appeared to happen late in 2019. In the same way, it doesn't 
matter when Rt is small (1.05 in the above scenarios), it only 
matters when Rt reaches its highest values.

A final analogy might help clarify this important point. 
Imagine you decide to shoot yourself at midnight tonight 
but at 11:45 a friend calls you and spends 45 minutes trying 
to convince you not to. But at 12:30 you hang up and shoot 
yourself anyway. What did that phone call ("lockdown") 
buy you? Nothing really - it just delayed the shooting by 
30 minutes. In the same way, 18 months of forbearance 
essentially buys nothing if the lockdown is then released 
while infections are still spreading. What matters is the 
maximum value of Rt. If it cannot eradicate the disease then 
South Africa needs to try to achieve the lowest Rt value that 
it can afford to sustain over a long period until a vaccine is 
available. This is not going to be quick, not for South Africa 
and not for most countries.

An important factor in our pessimistic scenarios where 
we see a large number of deaths is our modelling of ICU 
overwhelm; basically demand outstripping supply when it 
comes to ICU beds. So let's have a brief discussion of what 
effect South Africa's limited ICU facilities has on fatalities.

ICU Overwhelm
South Africa has somewhere in the region of 4000 ICU 
beds in private and public hospitals. Looking at Figure 4 
we see that the peak numbers in critical state (i.e. needing 
ICU) typically exceed 30,000. At peak only the youngest 
and healthiest people will be given ICU access. We assume 
their fatality rate will be around 30% while for the rest their 
prospects are unfortunately very poor. In Figure 4 we allow 
it to vary between about 50 and 95% but for concreteness 
here we assume it is 85%.

To see what effect this has on fatalities let's take our last 
scenario, the one that starts with Rt = 1.05 and transitions 

patients who will be tested, the percentage of patients who 
will need hospital treatment etc... But there are other key 
unknown parameters such as the length of time someone is 
infectious, which plays a crucial role in determining Rt.

Part of the problem is that available studies are often 
contradictory, because they are often based on small 
samples. It is therefore important to allow for the full range 
of our current uncertainty when making forecasts, not just to 
cherry pick the results that best fit a particular narrative. For 
example, some studies assume the asymptomatic fraction to 
be around 75%. But the comprehensive analysis of the town 
of Vo' in Italy, where everyone was tested twice, found an 
asymptomatic fraction around 43%. Assuming 43% for the 
asymptomatic fraction instead of 75% pushes up predicted 
deaths significantly. We deal with such uncertainties by 
also allowing the key parameters to vary within our best 
estimates of their current uncertainty ranges, but sensible, 
knowledgable people can disagree on what those ranges are.

It is also critical to appreciate that parameter estimates 
are often subtly dependent on testing. For example, the 
fraction of cases needing hospitalisation is often taken to be 
around 20%, the number found in China. But this fraction 
is much higher or lower in countries that test less/more per 
capita than China. In the extreme case, if you only test very 
severe cases you will, instead, find that nearly 100% need 
hospitalisation. So if you are in a country that only tests the 
most severe cases using a 20% hospitalisation fraction will 
lead to a significant under prediction of deaths.

This is all quite abstract so let's consider a couple of specific 
toy examples. By "toy" here we mean straw man scenarios 
that are not realistic models of South Africa but which 
capture some useful insights. These will provide some 
intuition about where the high death numbers are coming 
from.

We will compare four toy scenarios for South African 
covering two years from April 2020 to March 2022. The first 
scenario has Rt = 1.05 at all times. This mimics a very strict 
lockdown that lasts for 2 years. It leads to only about 10,000 
deaths, though that number is still increasing after two 
years as the disease continues to spread slowly through the 
population. The other three scenarios also all start with Rt = 
1.05 but then transition to Rt = 2 after 6, 12 and 18 months 
respectively. This mimics coming out of lockdown and 
returning to something like "normal" life. What is notable is 
that all the three scenarios end up with the same number of 
deaths: about 470,000, as shown in the Figure 5.

Why doesn't it matter when the lockdown happens in terms 
of determining the final death toll? Why does't all that hard 
work for 6, 12 or 18 months count for anything in the end? 
Well, remember Figure 1? It said that the only thing that 
mattered in predicting the final infection fraction was the 
value of Rt. In this case, the most important value was the 
phase with Rt = 2, which in this toy model case predicts that 
80% of South Africa would become infected, and hence that 
there would be very high numbers of deaths.

Referring to Figure 1 isn't really an explanation of why the 
long initial lockdown makes no difference though.

Figure 5: Deaths over time from 1 April 2020 in four toy 
scenarios. The first (bottom curve) with Rt = 1.05 for two years, 

the other three scenarios start with Rt = 1.05 but transition to Rt 
= 2 after 6, 12 and 18 months (at the grey vertical lines). All of 
these latter three end with the same number of deaths of about 

470,000, independent of when the lockdown ended showing that 
countries need to be vigilant over long time scales.
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The results are shown in Figure 7 on a log scale which 
makes the differences look small but the critical ICU peak 
for these three toy scenarios changes from 72,000 to 48,000 
to 34,000 (top left) which translates into final fatalities 
of 470,000, 309,000 and 206,000 respectively (top right), 
showing that investing in non-invasive ventilators may have 
a massive impact on reducing deaths even in the presence of 
ICU overwhelm if they can reduce the probability of people 
transitioning from general wards to high and critical care. 
Further, such interventions help reduce deaths even in the 
optimistic scenarios. Note in Figure 7 that there is no change 
in the total number of cases (bottom right), and only a small 
change in the number of hospitalised cases (bottom left).

Of course, our toy projections are overly hopeful, even if the 
non-invasive ventilators are very effective. Figure 4 shows 
that many of our scenarios have more than 300,000 people 
requiring hospitalisation at peak. South Africa only has 
about 100,000 hospital beds (an effect we have not modelled 
which will further increase fatalities over what we have 
projected) and even making 50,000 non-invasive ventilators 
will be a huge undertaking.

Conclusions
To summarise our main result: there are scenarios consistent 
with what we currently know about COVID-19 that have less 
than 10,000 total deaths, but equally there are scenarios with 
400,000 or more total deaths. The future is not yet written: 
in the absence of vaccine or treatment breakthroughs, what 
the government and public do over the next 12-18 months 
will have a huge impact - positive and negative - on the final 
death toll.

However, the fact that many of our scenarios have high 
COVID-19 death tolls does not mean we are suggesting that 
lockdown should necessarily be reimposed or tightened. 
The hard tradeoffs between COVID deaths, damage to the 
economy, and the suffering and deaths directly or indirectly 
caused by strict lockdown are incredibly complex and far 
beyond the scope of our analysis. But let us not enter into 
those important discussions with a false sense of security 
about the worst-case COVID-19 scenarios.

Finally, you might argue that the compartmental models we 
have used are not sophisticated enough to accurately model 
the pandemic in South Africa and the world. Absolutely. 
They are relatively simple models. But more complex and 
realistic models must out of necessity have many more 
unknown knobs, levers and parameters that we don't know 
or can't know yet, and that extra flexibility will lead to even 
more uncertainties in the long-term pandemic predictions, 
so going to a more realistic model will not change our main 
results. It is like accurate long-term weather forecasting: 
it's just beyond our capabilities currently. For while I may 
hope that the weather will be 25C and sunny at 10am on 1 
December from six months out, but I won't believe anyone 
who claims they can predict it with any confidence.

Our report with full technical details, and discussion of 
limitations and next steps, is available at https://docs.
google.com/document/d/1WBri6wTXfwqwz4K18Yvt2vRan-
ydz18RwgGZJLJHuLg/edit?usp=sharing.

"All models are wrong, but some are useful" - George Box.

to Rt = 2 after 180 days, but in the one case we assume 
everyone has access to an ICU if they need it while in the 
other only 4000 people have access to ICU at any time. The 
differences are stark. In the case with no ICU overwhelm 
only about 210,000 die. When we include ICU overwhelm 
it rises back to 470,000. Germany's relatively low death rate 
likely is partly due to their high number of ICU beds per 
capita relative to Italy, Spain and the UK.

Unfortunately our conclusion is that ICU overwhelm is 
likely to significantly increase South Africa's IFR. In Figure 
4 it increases the median number of deaths by approximately 
half. However, the goal of the National Ventilator Project is 
to reduce the number of people who need ICU.

The National Ventilator Project
The National Ventilator Project, managed by SARAO, has 
the goal of supporting South Africa's COVID-19 response 
via the large-scale production of non-invasive ventilators. 
The aim is to reduce the number of people who end up in 
ICU. We don't yet know how effective this approach will be 
but let's take our previous toy model and explore the effect 
of the non-invasive ventilators by assuming they change the 
fraction of hospitalised patients who end up in ICU in three 
scenarios: (1) the default value (25%), (2) 17% and (3) 12%. 
We assume only 4000 ICU beds, so there are extra fatalities 
from ICU overwhelm.

Figure 6 - In this toy model, ICU overwhelm more than doubles 
fatalities compared to a model without ICU overwhelm (Rt = 

1.05 for 6 months followed by Rt = 2 for the remaining  
18 months).

Figure 7 - the potential effects of non-invasive ventilators 
on critical cases and fatalities, in our toy model shown on a 
logarithmic scale. Keeping people out of the critical state is 

very effective at reducing deaths.
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Deep learning holds enormous promise for automating the 
labelling of bioacoustic data. The number of applications 
is growing, but the majority of datasets are still labelled 
manually, even as the rate of data collection makes this 
increasingly unsustainable. The mismatch between the 
potential of deep learning approaches and their actual 
uptake among practitioners occurs because getting models 
to perform as well as an experienced human is difficult. 
Human-like performance usually requires substantial 
amounts of training data or relatively stable background 
environments, conditions that are often absent in ecological 
surveys. Model tuning and data manipulation is often 
required, and while guidelines are emerging these can, with 
some justification, appear subjective and case specific. A 
lack of computing resources and user-friendly software can 
also be a barrier to entry. 

Case studies 
reporting successful 
applications play 
an important role 
in developing and 
disseminating best 
practices, and in 
discriminating 
between those tasks 
that current deep 
learning methods are 
able to automate and 
those they cannot. No 
studies to date have 
reported the process 
of applying deep 
learning at the scale 
of a typical acoustic 
monitoring project 
designed to answer a 
well-defined research 
question.

Our efforts describe the development of a classifier for 
identifying Hainan gibbon (Nomascus hainanus) calls in 
passive acoustic recordings collected as part of a long-term 
monitoring project whose conditions illustrate both the 
appeal and difficulty of automation. Hainan gibbons are 
one of the world's rarest mammal species, with fewer than 

30 individuals believed to exist in the wild. The acoustic 
monitoring project was established in 2015 to better 
understand gibbon population size and structure, movement 
patterns, and space use. Passive acoustic recordings were 

made by a fixed 
microphone (or array 
of microphones) 
located in situ in the 
gibbons' habitat, and 
set to record for several 
hours each day.

We explored the 
development of 1-D 
(raw amplitude inputs) 
and 2-D (converted 
spectrogram input) 
CNNs. Our 2-D models 
allow new recordings 
to be classified on 
a per-second basis, 
to a high degree of 
accuracy. An 8 hour 
input file can be 
processed in 6 minutes 
and on 72 hours of 
testing data we obtain, 

on average, 3 minutes of false positives and 38 seconds 
of false negatives. Despite 3 minutes of false positives, 
our model will greatly facilitate the process of manually 
annotating these datasets by ruling out large portions of 
recordings that have a near-zero probability of containing 
gibbon song and guide the practitioner to correct areas of 
large 8 hour files.

Hainan gibbon, extracted from Zhou, Jiang and Deng, 
Huaiqing, Two Endemic Primates’ Species in China: Hainan 
Gibbon and Guizhou Snub-Nosed Monkey. 2019

Illustrating how an 8 hour audio file is processed by extracting 10 second 
segments and processing it through our 2-D convolutional neural network.

Deep learning holds enormous 
promise for automating the labelling 

of bioacoustic data
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Harman : a normalisation 
method for genomic data sets

There are now large-scale data coming from genome 
projects and generated using multiple time points at various 
lanoratories by different platforms. Therefore batch effects 
are now potentially increased. Currently there are multiple 
batch evalutation and correction methods. These methods 
sometimes fail to produce all the underlying batch effects.  
In this article we review Harman and compare it with two 
other methods ComBat, ExploBatch.

Harman was developed first and foremost, to tackle the 
double edged problem with batch effects – to optimise  
batch noise removal with the constraint that the risk of  
also removing genuine biological variance is quantified  
andkept to a sensible level determined by the user.

Let us consider the case where the smallest amount that the 
user is ready to say that there are batch effects in the data 
set is smaller than the confidence percentage. It follows that 
the amount of batch mean dispersion comes from the batch 
noise. Given a principal component (PC) the sample score is 
given by,
                                      ckj = ABk + skj ,                                          (1)

with i = 1, .., N and k = 1, .., b, where cjk is the score 
corresponding to the jth sample in batch k with batch mean 
ABk , N the number of samples per batch, and b the number 
of batches. skj thus becomes the distance between the sample 
score ckj and the center of the batch to which it belongs.

Removing the noise or batch effect means as much as 
possible ”drawing back” or ”reducing” the observed batch 

Authors: Milaine Seneu Tchamga and Gaston K Mazandu

mean dispersion under the condition that the limit set by the 
user is not greater than the confidence value. Put another 
way, the corrected version of ckj is given by

ckj(corrected) = r.ABk + skj, 0 ≤ r                                                 (2)
         < 1 such that L(dk(corrected)) = 1 − confidence limit  (3)

where L is the overall probability.

We apply Harman to a dataset with noise. The dataset used 
was made of 25 genes. We measured the error made and 
compared it with that of two other methods namely Combat 
and ExploBatch. We plot the result. See Figure 1. It can be 
observed that Harman is the one with the least amount of 
error made. It is therefore the best method.

We can conclude that Harman’s ability to better remove 
batch noise, and better preserve biologically meaningful 
signal simultaneously within a single study, and maintain 
the user-set trade-off between batch noise rejection and 
signal preservation across different studies makes it an 
effective alternative method to deal with batch effects in 
high-throughput genomic datasets. Har-man is flexible 
in terms of the data types it can process. It is available 
publically as an R package.

(https://bioconductor.org/packages/release/bioc/html/
Harman.html), as well as a compiled Matlab package (http://
www.bioinformatics.csiro.au/harman/) which does not 
require a Matlab license to run.

Figure 1: Result of the sum of error for the three methods: ExploBatch, Combat and Harman
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Deep learning has given a huge boost to the rapidly 
developing field of computer vision. With Convolutional 
Neural Network (CNN), a range of new applications of 
computer vision techniques are now becoming part of our 
everyday lives. These include face recognition+indexing, 
automation in self-driving vehicles and radio controlled 
aircraft, medical diagnostics, monitoring the health of crops 
and livestock, and more. In the past few years, another deep 
learning algorithm, the Recurrent Neural Network (RNN), 
has shown an outstanding ability in labelling and prediction 
tasks for sequential data, such as in financial markets, 
climate/weather phenomena, and medical events.

According to reports from the World Health Organisation 
and the South Africa Transport Department approximately 
1 million road accidents, with around 14000 deaths, are 
reported in South Africa, per year. On average over 40 
people are fatally injured and over 20 left permanently 
disabled, daily. Currently in computer vision, anticipating 

Traffic Accident Forecasting  
using Deep Learning

Figure 1: Top row: CNN-predicted Regions of Interest, RoI (in blue) for 3 frames from a traffic video 
involving an accident at t = 0 second mark. Above each RoI is shown its attention value (in red). Higher 
the attention, the higher the chance that the corresponding RoI could be involved in an accident. RoIs 
with attention value above 0.4 are plotted in green boxes. The time to accident and the probability of 
accident are quoted within each frame. Bottom row: RNN is used to predict showing the probability of 
accident (along y-axis) at each of the 100 frames (each frame is 0.04 seconds long). RNN triggers an 
alarm if accident probability goes above the trigger threshold of 50% (red dashed line).

road accidents is much less addressed than anticipating 
events such as making a turn or changing a lane, since 
accidents are rare events and usually occur in many different 
ways, against a backdrop of diverse seeing conditions and 
background traffic. To overcome these challenges, we aim to 
combine the power of CNN with RNN to predict the future 
occurrence of road accidents. The dataset consists of 1750 
traffic videos (each video is 4 seconds long and has 100 
frames) recorded using dashboard mounted cameras.

For example, in Figure 1 we show 3 frames from an accident 
video clip, at time -1.56, -0.52 and 0 seconds before the 
accident. You can see the two motorbikes collide at t = 0 
seconds. Note that the other 97 frames are not shown for 
visual clarity. Of the 1750 videos, 620 involve an accident. 
All accident videos are clipped such that the moment of 
accident corresponds to t = 0 second mark, together with the 
recording of the accidents from t = –3.6 seconds before the 
accident to t = 0.4 seconds after the accident.
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Our accident prediction recipe is as follows: First, we use an 
object detection code to detect regions of interest (RoI) in 
each frame of a video clip. In Figure 1, RoIs in a frame are 
shown in blue boxes. Each RoI is then fed into a state-of-
the-art CNN to extract N-dimensional feature representation 
of the RoI. This N-dimensional encoding tells us what class 
the RoI belongs to. We track 5 classes: human, bicycle, 
motorbike, car and bus. These steps are repeated for each 
of the 100 frames of a video. The N-dimensional feature 
vectors from each frame essentially form a time-series 
dataset, which can be fed into a RNN model to anticipate an 
accident. The RNN is trained to model the temporal relation 
between video frames. The goal is to then predict, at each 
frame, whether an accident is imminent. Since accidents are 
scheduled to happen at t = 0 second mark, a well trained 
RNN should trigger an alarm much earlier than t = 0 
seconds.

In Figure 1 (bottom row), we plot the probability (along 
y-axis) of a forthcoming accident for each of the 100 frames 
(along x-axis, where each frame is 0.04 seconds long) of a 
video clip. One can see that at t = –0.52 seconds before the 
accident actually happens, the RNN model anticipates an 
accident to occur with 55% probability, and shortly thereafter 
the probability of an accident goes up to 100%. If the RNN is 
set to trigger an alarm at probability 50% (red dashed line), 
then the driver will be alerted of an imminent accident 
at about t = –0.5 seconds before the accident. This is very 
encouraging since very often, avoiding accidents is a split 
second decision. Lowering the trigger threshold to 20% 
would sound the alarm at about t = –1 second mark, thereby 

giving the driver even longer time to take collision avoidance 
or mitigation steps.

In Figure 2 we show a video clip that has no accident. It 
involves a motorbike (in red jacket) coming from behind and 
riding across the vision of the driver. A well trained RNN 
should predict "no accident" for this example. In the top 
row, middle frame, you can see that the accident probability 
spikes up to 0.34. This is because the RNN anticipates the 
red motorbike will most likely hit either the motorbike 
in front, or hit the vehicle recording the video. As the red 
motorbike steers clear of all traffic, the accident probability 
drops back down (see plot in bottom row). Setting the RNN 
trigger probability threshold to 20% would produce a false 
accident alarm. Thus, setting the RNN trigger to a high value 
helps to keep the count of false alarms low, but much more 
importantly, can be detrimental to saving lives. For traffic 
accidents, the cost of a RNN model missing to report a true 
accident far exceeds the nuisance of a false alarm, thus it is 
advisable to have a lower RNN trigger threshold to minimise 
false negatives. Our RNN model’s precision is ∼ 68%. In 
other words, for every 100 traffic videos for which the
RNN sounds an alarm ∼ 68 videos indeed have an accident 
while ∼ 32 videos have no accidents and turn out to be false
alarms.

This CNN+RNN approach to anticipate accidents can 
easily be extended to a range of other applications, such as 
anticipating criminal activity using video recordings from 
security cameras.

Figure 2: Similar to Figure 1, but this video clip does not involve any accident. Note that the accident 
probability stays under the trigger threshold of 50% (red dashed line) throughout the video clip, thus no 
alarm is triggered by the RNN model at any stage.
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Equilibration is a thermodynamic process during which 
energy is exchanged between a system and its environment, 
until the system settles into a stationary state – a process
ubiquitous in nature and forming the cornerstone of many 
applied sciences. The justification of equilibration, however, 
is still resting on the fundamental assumption of statistical 
mechanics, instead of being a rigorous result from first 
principles. The fundamental assumption states that all 
microstates that realise a certain macrostate are equally 
probable.

Thinking of a cup of hot coffee in a room, equilibration 
would be the process of heat exchange between cup and 
room until the coffee has cooled down to room temperature.
In that example, possible microstates are different sets of 
positions and velocities of all molecules in the room.  
In terms of the fundamental assumption, we observe
equilibration because the cup-room-system is overwhelmingly 
more likely to take one of the microstates realising equal 
temperatures, because this macrostate is realised by 
overwhelmingly more microstates than other macrostates. If 
all microstates would not be equally likely, we could have a 
situation where particular microstates corresponding to hot
coffee and cold room are more likely, and we would not 
observe thermodynamic equilibration.

As quantum mechanics governs the dynamics of microstates, 
it serves as the first principle in attempts to proof the 
fundamental assumption. As a linear theory, however, 
quantum mechanics does not predict single, deterministic
trajectories like in classical mechanics, but instead considers 
all possible linear superpositions of states of the entire 
system. The probability of finding the system in a certain 
superposition state is, in general, not uniform and as such 
contradicts the fundamental assumption. Yet we know from 
everyday life experience and numerous experiments that the 
fundamental assumption cannot be entirely wrong.

Recent research has worked out that the theory of quantum 
mechanics as a basis for realistic models is too general, and 
certain additional properties have to be imposed to ensure
that predictions of quantum models are in line with 
everyday life experience. A currently debated candidate 
for such a property is locality, which corresponds to the 
intuition that objects predominantly interact with their
local surroundings.

Random graph ensembles to  
model equilibration timescales of 

isolated quantum systems

As a new way to incorporate locality into quantum 
mechanical models, we propose to encode quantum systems 
as weighted graphs, where the superposition states of the 
system are encoded as the nodes of the graph, and the 
weights of the edges are derived from the coefficients of the 
linear dynamics. It turns out that locality is reflected in three 
structural properties of these graphs: the sparseness, the 
degree distribution, and the bandedness, see Figure 1.  
Generating random graphs respecting these properties 
constitutes a potential new way to model realistic quantum
mechanical models in agreement with the laws
of thermodynamics.

Figure 1: Adjacency matrices of graphs derived from quantum 
spin chains with different degrees of locality. The parameter n 
is the number of spins simultaneously involved in interactions,
and d is the maximum distance across which these 
interactions take place. Strong locality corresponds to n=2 
and d=1 (top left), while n=8 and d=7 implies no locality
(bottom right). The graphs have 256 nodes, edges are indicated 
by black pixels.
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A popular benchmark criterion for such an agreement is the 
prediction of equilibration timescales Teq consistent with 
thermodynamics which proved to be more realistic using
the proposed random graphs compared to alternative 
random matrix approaches. In addition, the equilibration 
timescales turned out to be strongly correlated with the 
maximum flow value fmax of a network defined on the
graph, as shown in Figure 2, which allows estimation
of equilibration timescales for system sizes otherwise 
inaccessible.

Apart from deriving the laws of equilibrium thermodynamics 
from quantum mechanics, it is debated how to even define 
equilibrium in a quantum mechanical setting. The challenge 

is that the underlying equation of quantum mechanics, 
the Schrödinger equation, is time reversal, which is in 
contradiction to the notion of equilibration. Referring again 
to the coffee cup example, time reversal would mean that 
the cooling down of hot coffee as well as the spontaneous 
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Figure 2: Maximum flow values fmax versus equilibration 
timescales Teq measured in repeated numerical experiments 
on the quantum systems that give rise to the graphs shown in 
Figure 1. The lower plot shows the results of each experiment, 
the upper plot displays the respective averages for all possible 
combinations of n and d.

heating of the coffee to its initial temperature are both valid 
solutions of the Schrödinger equation. While we observe the
former every day, the latter has presumably never been 
observed. The key in resolving this paradox is again the 
notion of probability: it is in fact possible that a cup of 
cooled down coffee spontaneously heats up again, but with
a probability smaller than winning every single gamble 
happening on earth in one lifespan.

While this probabilistic explanation has already been 
established in statistical mechanics without reverting to 
quantum mechanics, it is notoriously dicult to apply this 
reasoning to quantum mechanical time evolution. To 
tackle this difficulty, we suggest to rewrite the Schrödinger 
equation as an extremely high dimensional stochastic 
process, where the only randomness stems from the 
preparation of the initial state of the system.

This is a realistic model: while the time evolution is 
deterministic, the preparation of an initial state intrinsically 
involves some randomness according to the widely accepted 
Copenhagen interpretation of quantum mechanics. It 
appears that the resulting stochastic processes have a 
family of stationary states in line with other definitions 
of equilibrium, but potentially offering a more robust and 
complete description of equilibration with many new lines 
of further research.
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Radio astronomy observatories are driven to the quietest 
regions on earth in an attempt to escape the relentless 
contamination from man-made radio emissions including 
satellites, television, radio, cell phones and aircraft. Despite 
this, contamination from Radio Frequency Interference 
(RFI) is often orders of magnitude stronger than the 
astronomical signals of interest and hence must be carefully 
removed from the science data. RFI will increasingly be a 
limiting factor for high quality science observations with 
current and planned radio telescopes, such as the MeerKAT, the 
South African precursor of the Square Kilometer Array (SKA). 

There have been numerous techniques devised to address the 
excision or mitigation of RFI from observed data. Historically 
approaches have fallen into three broad classes: linear 
methods, such as Singular Vector Decomposition (SVD) 
or Principle Component Analysis (PCA); threshold-based 
algorithms, such as cumsum and SumThreshold, where RFI 
is flagged when data exceeds some threshold in the smoothed 
2D time-frequency plane; and finally Supervised Machine 
Learning, where the algorithm learns from examples of RFI 
classified by expert astronomers. Deep learning that has been 
used on simulated single dish data with a U-Net architecture 
delivered  better results, as measured by the Area Under the 
ROC Curve (AUC) and precision-recall metrics, compared to 
SumThreshold methods. 

Deep Learning improves identification 
of Radio Frequency Interference

Our work extends this result by exploring new deep architectures 
and, in particular, now demonstrates superiority on simulated 
interferometric data sets using our new RFI simulator for 
telescope arrays.

We use a a Convolutional Neural network (CNN) based 
model, is inspired by the residual network architecture ResNet  
(that we call R-Net) to do a binary classification of every 
pixel of the time-frequency images given the pixel and those 
around it. The data used consisted of; HIDE is a simulated 
single dish visibilities, MeerKAT which consist of 64 antennas 
interferometric simulation and KAT-7 which is a real visibility 
observation that has been flagged by astronomers. The output 
is a binary mask image of the same size. R-Net is very simple 
in terms of its architecture (Figure. 1) since it consists only 
of convolutional layers with zero paddings to save the size 
through layers. After each convolutional layer (except the last 
one) we insert a batch normalization and RELU activation 
layer. The hyperparameters of such an architecture are the 
number of layers, kernel size, number of filters, location 
of shortcut(s) and activation function.  Searching the 
hyperparameter space is very time consuming and limited 
by available computing resources: our exploration of the 
potential hyperparameters was guided by intuition and trial 
and error applied to the validation set. 

Figure 1: Schematic views of the U-Net architecture (top) and our new R-Net algorithm (bottom). Both algorithms predict RFI 
probabilities for each pixel in the map. The final binary mask is produced by passing the output maps through a thresholding 
process which is one of the hyperparameters for the algorithms.
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All of the hidden layers in the R-net contain 12 filters 
and the kernel size is always 5 x 5. R-Net does not change 
the input size through layers so any number of hidden 
layers works;  we try 3, 5, 6 and 7 numbers of layers. A 
shortcut (residual network) connection directly transfers 
information from earlier layers to the deeper layers to avoid 
the degradation problem. We used no shortcut connections 
for the 3 layer architecture, one for the 5 and 6 layers 
architectures and 2 shortcut connections for the 7 layer 
architecture.  Our initial results show the performance of the 
5 and 6 layers architectures (hereafter R-Net5 and R-Net6) 
provide the best performance in terms of AUC.  

To compare R-Net against the other two reference algorithms 
(U-Net and SDP-Flagger*) we consider several metrics, in 
particular the area under the True Positive Rate (TPR)-
False Positive Rate (FPR) curve and the AUC. Since the 
datasets we considered can be  significantly unbalanced, the 
Precision-Recall curve, F1-score and Matthew correlation 
coefficient (MCC) are calculated as well for each case. We 
found that the 5 and 6-layer versions of R-Net outperform all 
other variants of U-Net and SDPFlagger significantly in all 
metrics, as shown in Figure 2.

Figure 2: R-Net significantly outperforms both U-Net and the SDP Flagger trained on MeerKAT simulations using only the 
absolute value of the visibility data (RFI threshold of 5). The legend shows corresponding AUC values for R-Net and U-Net. 
Note the significant drop in performance of all algorithms relative to their corresponding results on the much simpler HIDE 
data. Dots show the SDP Flagger results using different hyper parameters. Although the SDPFlagger does relatively well on the 
TPR-FPR curve it performs poorly for all values on the precision-recall plot. Contours denote iso-F1 scores. For all datasets used 
in our analysis, we varied the SDP Flagger hyperparameters, outlier-n-sigma (O) and background reject (Rb). The results are 
shown as the point cloud.  

We further highlight the effectiveness of transfer learning 
from a model initially trained on simulated MeerKAT data 
and fine-tuned on real, human-flagged, KAT-7 data. Despite 
the wide differences in the nature of the two telescope arrays 
the model achieves an AUC of 0.91, while the best model 
without transfer learning only reaches an AUC of 0.67.

A summary of the performance of all the algorithms on all 
the datasets and all thresholds is shown in Figure 3. 

In conclusion we describe a new ResNet-style convolutional 
neural network algorithm (R-Net) for Radio Frequency 
Interference (RFI) flagging. We have tested this algorithm on 
both single-dish and realistic interferometric telescope array 
RFI simulations showing that it significantly outperforms 
the current state-of-the-art algorithms including both U-Net  
and the modified version of AOFlagger currently used in the 
MeerKAT data reduction pipeline. 

* SDP Flagger is the SARAO Science Data processing in-house RFI flagger, 
which is based on the known AOFlagger by Ofringa (2017)

Figure 3: Star plot comparison between F1 scores of all the 
algorithms for all the datasets and different thresholds (e.g. 
HIDE-5 corresponds to the results where the threshold is 5). 
The center corresponds to a score of zero and the outer contour 
to a perfect score of 1. R-Net outperforms all other algorithm 
variants as it encloses all other algorithms on all datasets and 
thresholds. Note that U-Net was not included for the transfer 
learning task on the KAT-7 dataset.
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Introduction
During the financial crisis and its systems reformation that 
took place in the years 2007 to 2009, financial risk prediction 
was identified as a major concern for the public afterwards. 
As a result, an understanding of model risk, especially the 
parameter estimation risk for predictive models is now
a significant interest to academics, policy makers and 
practitioners. According to Tunaru (2015), parameter 
estimation risk is a problem in that the dynamic model’s 
specification and parameter set are viewed as being known 
by the financial model developers and users whereas the true 
parameter values are basically not known with certainty.

In the literature, we compare several statistical methods 
and unconstraint optimization methods for obtaining the 
minimum cost function from the binary LRM, which is an 
objective model that has not been looked at for different 
organizational fields and academic problems (Minka, 2003; 
Diers, Eling and Linde, 2013; Borowicz and Norman, 2006; 
Millar, 2011). Yang, Brown, Moran, Wang, Pan and Qin 
(2016) show the use of Iteratively Reweighted Least Squares 
(IRLS) and Kalman Filter with Expectation Maximization 
(EM) in measurement error covariance estimation. They 
reveal that on average the IRLS converges quickly and 
gives a more accurate parameter estimate for the model 
of interest, which was backed by the work of Diers et al. 
(2013). Dinse (2011) adopted the EM method for fitting a 
four-parameter LRM to binary response data, and confirms 
that EM method automatically satisfies certain constraints, 
such as finding variance-covariance matrix of estimates, 
that are more complicated to implement with other 
parameter estimation methods. Hinton, Sabour and Frosst 
(2018) achieved significantly better accuracy when using 
EM algorithm. Stochastic Gradient Descent (SGD) and its 
variants were versatile parameter estimators that have been 
proven invaluable as learning algorithms or step size for large 
datasets (Bottou, 2012). Advice from the Bottou (2012), is for a 
successful application of these Batch Gradient Descent (BGD), 
Mini-Batch GD (MBGD) and SGD to be considered when 
one performs small-scale problems, whereas the majority 
of researchers allude that the methods work efficiently for 
large-scale problems (Robles, Bielza, Larrañaga, González and 
Ohno-Machado, 2008; Ruder, 2016). Conjugate Gradient (CG) 
method was applied for comparison of three Artificial Neural 
Network (ANN) methods in the application of bankruptcy 
prediction (Charalambous, Charitou and Kaourou, 2000). The 
line search Newton CG methods such as Truncated Newton 
(TN) method have been highly effective approaches for large-
scale unconstrained optimization (Dembo and Steihaug, 1983), 
but their use for LRM has not been fully exploited, hence it 
has been considered in this article. Some of the most popular 
updates for minimizing the cost function of binary LRM, are 
the Broyden, Fetcher, Goldfarb and Shanno (BFGS) method 
and its variant Limited-Memory BFGS (LM-BFGS) methods. 
The LM-BFGS is mostly used to save on the memory needed 
for computation of the Hessian matrix that BFGS method
usualy waste (Nocedal and Wright, 2006). The Nelder Mead 

Assessment of model risk due to the use of 
an inappropriate parameter estimator

(NM) simplex method developed after the Powell’s (PW) 
method is considered to be performing efficiently for the 
computation of symmetrical balanced binary response in a 
widely used LRM (Noubiap and Seidel, 2000; Powell, 1964).

The contribution of this article is presenting different parameter 
 estimation methods for predicting PD through binary LRM 
and determining optimum parameters that minimize the 
objective model’s cost function. The parameter estimation 
method with a minimum cost function among the other 
methods is considered to be the better parameter estimator. 
Thus, the high the binary LRM cost function the more 
inappropriate the parameter estimator becomes. 

Parameter estimation methods for predictive models
In this section, the binary LRM with its cost function using 
eleven parameter estimation methods are briefly described. 
In order to examine factors influencing a decision of 
whether an obligor experiences a default event or not, we 
consider the following binary LRM to quantify the PD model, 
recommended by Neter, Kutner, Nachtsheim and Wasserman 
(1996):
                                                                                                                        (1)

where Yi is a binary response variable indicating the status of 
the obligor, which should satisfying the following:

  Yi =    1; if default event occurs
                        0; otherwise

Xi,p is the design matrix of p = 2 predictor variables with the 
sample size n ∈ ℕ, cases i = 1, 2, ..., n, 𝛄 is the vector of 
parameters for the binary LRM and assume that the error 
terms 𝜀i are independent and identically logistic distributed. 
We let the conditional probability πi = P(Yi = 1  ⎸ XT  ) to be PD 
event given the predictor variables, denoted by the logistic 
function as
            (2)

Therefore, the estimator of interest is shown as

                                 (3)
                                                                

To find the estimates given in equation (3), we use the 
different estimation methods. The BGD method is a first-order 
iterative optimization algorithm for finding the minimum 
of a nonlinear function. It minimizes the cost function 
iteratively by starting from an initial random value and 
update the parameter values using some step size referred 
to as the learning rate. The SGD method is an alternative 
and simplified version of the BGD for minimizing the 
differentiable cost function. The MBGD is a sub-method of 
the BGD and SGD that partition the dataset into small batches 
of dataset, used to compute the model cost function. The 
sum of the gradient over the mini-batch reduces the time 
spent for approximated convergence and the average of the 
gradient further reduces the variance of the SGD. The IRLS 
is a numerical method used to find the optimum parameter 
value. It is one of the fastest and most applicable methods 

{

i,p

1πi =                              
  

     .1 + e ( –  XT  𝛄)i,p

i,pYi = XT 𝛄+𝜀i       

 𝛄 = arg max [ℒ(𝛄)] = arg min [𝒞 (𝛄)] ,                                                       
  𝛄                             𝛄
ˆ
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for minimizing a cost function is the NR method. Utilizing 
the first-order Taylor series approximation and determining 
the starting estimate, usually through the Ordinary Least 
Squares (OLS). The EM method may be utilized to obtain 
the maximum log-likelihood expectation for the parameter 
of interest. Here, we utilize the method for minimizing the 
cost function. The NM simplex method has always been 
the most widely used method for nonlinear unconstrained 
optimization. The PW method is an optimization method 
that approximates the minimum value of a function by 
making an assumption that the partial derivatives of the cost 
function does not exist. The CG is a method that efficiently 
avoids the calculation of the inverse Hessian by iteratively 
descending on the conjugate directions. The TN method is 
also known as the inline search Newton CG method and use 
predictable amount of computational storage. The BFGS 
method is a Quasi-Newton method also known as a variable 
metric algorithm. This is a nonlinear optimization method 
for solving unconstrained problems. The LM-BFGS method 
is an extension of BFGS method that belongs to the variants 
of Quasi-Newton optimization problems. For model risk 
mitigation the optimal parameter estimation method should 
ensure that the cost function is minimized among all other 
optimization method.

Results 
In the effort of trying to address Model Risk with respect to 
parameter estimations risk, we compare the performance of 
the parameter estimates when the binary LRM is applied to 
estimate the PD. All the codes of the analysis were computed 
on Python version 3.7.1 with Jupyter Notebook version 5.7.4.

We set the parameter intercept 𝛾0 = 0.0 and the parameter 
slope 𝛾1 = 0.5. Therefore, we use the simulation to produce 
the balanced dataset of default and non-default events. For 
each of true parameters and sample size of 6 400, the dataset 
was simulated and analyzed. To keep our model simple, we 
included only one predictor variable which is uniformly 
distributed (i.e., Xi ∼ U[–8;8]) for which the cost function  
𝒞(𝛄) is investigated. The dataset was simulated using the LRM 
and setting the parameter to 0.5 for a Bernoulli distribution 
resulting in a dichotomous response variable Yi indicating 
whether an event occurred or not. The PD is then estimated 
through the use of LRM given in equation (2).

We use the accuracy rate 𝒜 to assess the performance of the 
optimized parameters in the accuracy model given in equation 
(2), which is expressed as 

where I(.) = {0;1} is the indicator function and n the sample size.

Applications to real dataset
This section is based on the application of the proposed 
methodology in section 2 to the benchmarking dataset. The 
anonymous dataset collected during the years 2016 to 2018 
is from one of the South African financial institutions that 
provide loans to clients. The dataset contains the history of
1057 clients with the default indicator been the binary response 
variable (Y), i.e. default = 1 and non-default = 0. To empirically 
compare the simulation and the real data results, we only 
considered one predictor variable (Xi). This variable is the 
average percentage credit to disposable income of the clients 
recorded monthly over the given period. Tables 1 and 2 presents 

the results of the optimized parameters for the binary LRM 
that minimizes the cost function, computed using 11 different 
parameter estimation methods. The BGD method described 
was configured to run 100 iteration for the simulated dataset 
but reveals convergence of the cost function 𝒞(𝛄)= 0:3881 in 
only two iterations (i.e. κ = 2).

       ∑n    [I(πi ≥0.5) ≡ (Yi = 1)] + ∑n    [I(πi < 0.5) ≡ (Yi = 0)],
𝒜=                                              n

i=1
ˆ

i=1
ˆ

Conclusion
In Section 2, the binary LRM is proposed as a default model 
to assess model risk with respect to parameter estimation risk, 
that is inappropriate parameter estimation method. The paper 
recommended numerical optimization methods as parameter 
estimators for estimating the model parameters through 
minimization of the binary LRM cost function. It is revealed 
that parameter risk is important and essential through 
the comparison of numerical experiments and simulation 
done in section 3. MBGD method is shown to outperform 
the alternative optimization methods. MBGD estimators are 
accurate, since the bias is smaller among alternative methods, i.e.

E(𝛾1)–𝛾1 = 0.4996–0.5 =–0.0004

Disregarding parameter risk can lead to a significant under-
estimation of risk capital requirements, depending on the 
size of the underlying datasets. Therefore, we conclude that 
predicting PD using the binary LRM with the known varying 
thresholds will lead to substantially different results when 
parameter risk is taken into consideration. That is, when 
several optimization methods are employed. Numerical 
optimization estimation methods are identified as been the 
ones that have parameters which minimizes the cost function 
or maximizes the log-likelihood function of the simple binary  
LRM. The impact of parameter estimation risk is depicted for 
an optimization method that yield the lowest cost function. 
Our experimental results support the need for further research 
of estimation parameter risk for binary LRM and other family  
of exponential models. Binary LRM with high order of predictor 
variables and interaction terms with different distributions 
may exhibit high parameter estimation risk implications. 
Therefore, it can be explored for further research of parameter 
estimation risk. Model risk management researchers and 
practitioners are therefore encouraged to consider parameter 
estimation risk through exploring different optimization 
methods as opposed to using the same traditional estimation 
methods repeatedly.

Table 1: Parameter estimation method results for PD using Binary LRM

Parameter estimator I b κ(ε) γ̂0 γ̂1 A C (γγγ)
BGD 100 1 2(0.01) 0.0051 0.4914 0.8294 0.3881
SGD 100 1 10(0.01) 0.0075 0.4898 0.8294 0.3881

MBGD 100 1 10(0.01) 0.0099 0.4996 0.8292 0.2936
IRLS 100 1 7(1e-08) 0.0134 0.4930 0.8291 0.3881
EM 100 1 39 (1e-08) 0.0134 0.4930 0.8291 0.3881
NM 100 1 88 (1e-08) 0.0239 0.4977 0.8236 0.3853
PW 100 1 2 (1e-08) 0.0239 0.4977 0.8236 0.3853
CG 100 1 9 (1e-08) 0.0239 0.4977 0.8236 0.3853
TN 100 1 8 (1e-08) 0.0239 0.4977 0.8236 0.3853

BFGS 100 1 10 (1e-08) 0.0239 0.4977 0.8236 0.3853
LM-BFGS 100 1 9 (1e-08) 0.0239 0.4977 0.8236 0.3853

Notes: The I is iterations, b is the random mini-batch size, κ is convergence of iterations and 
ε is the tolerance level in brackets, A is the accuracy level. C (γ) is the cost function. NB for 
MBGD 40 sub-batches were generated from the sample size.

Table 2: Parameter estimation method results for PD using Binary LRM on real dataset

Parameter estimator I b κ(ε) γ̂0 γ̂1 A C (γγγ)
BGD 100 1 10(0.01) 0.1426 0.0883 0.6244 1.3172
SGD 100 1 10(0.01) 2.1909 0.1115 0.6244 2.3416

MBGD 100 1 10(0.01) 0.2211 0.1369 0.6244 0.2564
IRLS 100 1 4 (1e-08) 1.1281 -0.0179 0.6339 0.6559
EM 100 1 8 (1e-08) 1.1281 -0.0179 0.6339 0.6559
NM 100 1 85 (1e-08) 1.1281 -0.0179 0.6339 0.6559
PW 100 1 60 (1e-08) 1.1281 -0.0179 0.6339 0.6559
CG 100 1 14 (1e-08) 1.1281 -0.0179 0.6339 0.6559
TN 100 1 15 (1e-08) 1.1281 -0.0179 0.6339 0.6559

BFGS 100 1 8 (1e-08) 1.1281 -0.0179 0.6339 0.6559
LM-BFGS 100 1 17 (1e-08) 1.1281 -0.0178 0.6339 0.6559

Notes: For MBGD 12 sub-batches were generated from the sample size.

5
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In many problems, it is beneficial to be able to achieve 
a global outcome from local interactions, for example in 
decentralised interactions.   In the literature, Pearl identifies 
a number of conditions for a form of distributed control 
system. As noted by Pearl (see Further Reading, below), 
meeting the conditions, as does an edge reversal algorithm 
of Gafni and Bertsekas, amongst other algorithms, solves 
a form of the dining philosophers problem. In the edge 
reversal algorithm described in the reading, a directed 
acyclic graph (DAG) is imposed on a network of nodes. 
Nodes consider the edges incident on them,  Sinks (like the 
green node, above) are considered to fire or to be on. On 
firing, the edges change direction, and the new sinks fire and 
so on. A number of distributed problems fall into the class of 
problems noted by Pearl, which are amenable to solution by 
edge reversal.

With edge reversal, local interactions lead to a type of global 
solution. A four-way stop (or n-way stop) is an instance of a 
problem potentially amenable to solution by edge reversal. 
Edge-reversal control could identify the allowed travel 
across an intersection, in an efficient manner, with a lane 
needing to consider only a local signal.  In this way, multiple 
junctions could also be chained together, with precedence 
controlled via the local interactions along edges, once the 
original DAG has been imposed, since edge-reversal provides 
a form of distributed turn taking.  

In fact, a traffic light can be considered a means of 
coordination by Aumann’s correlated equilibrium (Rescoria 
2019).  Coordination can also be achieved by convention 
(Rescoria 2019). There is an extensive literature on both 
areas. Convention can be used to resolve coordination 
problems, so driverless cars and autonomous agents in the 
field must know or determine the applicable conventions.  
An interesting idea is the norm of coordination for these 
autonomous agents – whether and how they can determine 
their own conventions and what those would be.

There is an extensive literature on coordination games, 
and coordination in the face of multiple equilibria can be 
solved by reference to convention, amongst other means. 
(In fact, in the literature, a traffic light is seen by some as 
an example of coordination using Aumann’s concept of a 
correlated equilibrium; see Further Reading, for an article 
on convention and its use in coordination.) Driverless cars 
and highly autonomous systems in the field must know or 
determine the applicable conventions. An interesting idea 
for these autonomous agents is whether and how they can 
determine their own conventions and what those would be.

Author: Simukai W. Utete

To be able to navigate the world, a robot requires capabilities 
beyond navigation. Intelligent autonomous systems must 
be able to make sense of a world populated with people, 
where scenes are dynamic and in which reasoning, and 
meta-reasoning, may be called for. This is the setting of 
interest – the field – and field robotics provides a rich, 
diverse set of challenges, interesting in themselves, and with 
diverse application.The navigating robot requires a range of 
capabilities, and an ability to unify them, as a task demands.

Data Fusion
One of the fundamental capabilities a robot might have is 
the ability to fuse data. For example, in mobile robotics, a 
vehicle might make use of camera, laser, sonar and other 
data types. Data fusion is the combination of data to form a 
picture of an environment, and is fundamental to robotics.  
It is also applicable to numerous other domains where data 
from diverse sources must be combined, for example. in 
environmental monitoring.

Decentralised data fusion systems, and decentralised systems 
in general, involve the processing of data over a distributed 
system, of sensor nodes, for example, but also across robots 
or other agents (see Further Reading). Decentralised 
systems are of particular interest because of their power and 
applicability in different problem settings.

Alongside fusion is the idea of breaking things into shares 
and how this could be done. First, why would this be done? 
In spread spectrum systems, a signal can be spread for 
transmission over a channel, to be reconstructed at the receiver, 
as in radar signal processing or in the Aloha communications 
system, of which more later. This process has multiple uses. 
Intelligent sensor networks and robots can benefit from being 
able to fuse diverse data and to break data into shares.

Coordination
People are good at coming up with solutions in action, online, 
as information changes. One capability important in software 
engineering and for computer systems is graceful degradation. 
In systems of multiple robots, there can be rules for interaction. 
If  a set of rules fails, it is important that a system can respond.

In some systems, when a traffic light fails, the control of 
traffic moves to use of a four-way stop. This is an example of 
graceful degradation, and of central control transferring to 
coordination by local agents. As a coordination mechanism, it 
has a number of important properties. For example, the four-
way stop method could be considered as achieving fairness 
(at some cost in terms of efficiency). A driverless car could be 
programmed to understand that this is the rule that applies; 
it could even learn from observations that this is the case. 
More interesting still would be groups of cars that are able to 
coordinate to achieve a similar outcome. 

A Robot Glossary



21

Interoperability is another potential concern for driverless 
cars, distributed devices or other autonomous agents seeking 
to coordinate. Some aspects of interoperability involve the 
problem of handling multiple equilibria. The agents must 
also make group decisions, for example via voting. Another 
consideration is that events considered rare might not be so 
in a fully autonomous situation, where many autonomous 
agents work together, driven by processing on numerous 
devices of similar type.

Active Problems
Many problems fall into this category, including active vision 
problems. Put simply, an active problem concerns a situation 
where there is a limit on position such that a restricted set 
of viewpoints must be used to solve the problem. This is 
central to the problem of adaptive sampling, in robotics and 
in other applications.  In active sensing, viewpoints might 
be restricted because of occlusion or because it is feasible to 
sample only a limited number of points. But active problems 
arise in time too, in condition monitoring, environmental 
monitoring and even situational assessment (needed by the 
navigating robot); a potential event must be detected via 
precursor samples in time before it occurs.

Games and Meta-reasoning
A capability that is useful for an autonomous system is 
the ability to reason about the reasoning of other agents. 
Common knowledge problems are ubiquitous in distributed 
systems. The navigating agent must also to be able to 
recognise the way that games and mechanisms work. Game 
theory and the theory of combinatorial games offer tools 
useful for achieving systems with high levels of autonomy. 
The driverless cars at the failed traffic light could reason 
via games to a four-way stop mechanism, a mechanism that 
allows each one a turn. In combinatorial games, position 
can be important. The outcome of the game might have been 
determined from the first position of play, or there might 
be a means of winning via strategy stealing. A robot able to 
recognise the game structure in an interaction could exploit 
this for its own or its group’s advantage.   

Synthesis
Biomimetic algorithms are of interest in many areas, for 
example in radar, or for the development of other types of 
sensor (see Readings for an example of bat-inspired sonar 
for mobile robotics applications). Animals such as bats can 
communicate in clutter, managing collisions in sound, yet still 
able to use echolocation to detect objects. The way that they 
behave in groups and the systems they form are particularly 
interesting for robotics applications.

The Aloha system mentioned earlier was developed by 
Abramson and a group at the University of Hawaii, in the 
1960s (see Further Reading for a history of the Aloha system).  
Some communications and biological researchers have 
likened aspects of Aloha processing to bat communication. 
In the pure Aloha algorithm, processors communicate 
asynchronously along a shared channel. This means that 
collisions can occur. On collision, the processors wait a 
random time before attempting to transmit once more.

A/B f1 f2

f1 collide transmit

f2 transmit collide

In a game structure, one could consider two robots, A and 
B, communicating using a frequency channel, so sharing 
spectrum and represent this situation, with payoffs to be 
applied, as: 

If the robots signal using the same frequency in close 
proximity, there is a collision. If spatial placement allowed 
for their organisation in a network with links between 
immediate neighbours they could use the edge reversal 
mechanism seen earlier to take turns signalling.

In nature, in some cases, collision leads to bats going to a 
higher frequency. (This is a simplification. The range of 
behaviours of bats and their calls are complex and nuanced.) 
In radar, this higher frequency is useful as pulses could then 
be separated and the channel shared in a manner akin to 
forms of software-defined radio and other similar systems. A 
robot able to learn to do this would be starting its own form 
of coordination. Auctions are a mechanism that is often 
applied to share spectrum. The collision avoidance chirps are 
like bids, a way to share spectrum in a physical system.

Anti-Patterns
In operating systems and software development, there 
are anti-patterns, patterns that should not arise. One can 
consider what the uses of these might be in a similar 
way to the discipline of stochastic resonance, a field that 
investigates uses of noise.   Mechanisms can be undermined 
by behaviour outside the intended scope; for example, 
bidding rings or other forms of collusion would be a problem 
for auctions. An interesting example of collusion (allowed) 
is seen in an international Iterated Prisoner’s Dilemma 
competition which allowed multiple entries per team and 
was won by colluding agents (see Further Reading).
Here collusion could be seen as a form of anti-pattern 
cooperation.

Consider again in this light the two robots sharing a frequency 
channel. As mentioned, in the pure Aloha algorithm, 
devices communicating along a common channel, could 
communicate asynchronously, with collisions allowed. 
On collision, the processors waited a random time, then 
re-transmitted.  Now consider robot ‘bats’, able to share a 
communication channel and change frequency.  If they 
transmit on the same frequency, a collision occurs, the 
interaction above. Their next interaction could be represented 
as below.

If they go up in frequency, they now find that their 
discrimination is higher, a new game ensues, where they 
have shared the channel, by raising their bid. But they 
would have taken the first move in another game, made a 
bid and found a way to cooperate and made a first move 
towards interoperability. They have also created shares. 
Many methods make use of the partitioning space at finer 
resolution, for example, occupancy grids applied in the 
robotics literature or adaptive sampling at different scales 
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Figure 1: Tropical cyclone Catarina.

in robotics and other domains. The readings include some 
examples of these. Going up in frequency means the robots 
are operating at a higher resolution. Taken as a whole, a 
system of this type is a new type of transmitter. (Although 
of course there are more complexities to the behaviour of 
groups of bats and communicating processors.) 

So far, only a single further move has been considered, not 
the possibilities and limitations of further moves, including 
the point at which further moves are not possible (i.e. what 
is the form of game2?). The limits of a game must be known. 
A game paradox is presented by Zwicker, in the form of a 
game, Zwicker’s Hypergame, where a move in the game is 
the selection of a particular type of game, of which the game 
could be one (a paradox of self-reference, see Readings).

For the transmitting robots, the skill which is sought is the 
ability to put capabilities together and synthesise something. 
The navigating robot aims to do something new. Somehow 
the robot recognises what needs to be done and acts in new 
and innovative ways. It would need not only to be able to 
step outside interaction structures via meta-reasoning but 
to develop new forms of interaction. With the ubiquity of 
distributed devices, in a range of domains, these issues are  
of wider application than field robotics.

A/B f1 f2

f1 game2 transmit

f2 transmit game2
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Tropical cyclones are weather phenomena characterized
by a low-pressure center and an intense rotating system of 
clouds that takes its origin over the oceans. These phenomena 
occur periodically at various points in the region of the globe 
situated near the equator between the tropic of Cancer and 
the tropic of Capricorn. Typically, tropical cyclones are 
accompanied by heavy rains and strong wind that sadly 
often have devastating effects on life, infrastructure, and the 
economy.

From a physical point of view, the study of the dynamics
of tropical cyclones falls within the realm of vortex motions. 
In 1992, George Craig derived a set of equations that are 
designed to model the dynamics of such vortices in light 
of fundamental laws of Physics and Thermodynamics. 
This model was further improved by Michael Cullen who 
proposed a more realistic framework in which the vortex lies 
within an ambient fluid at rest with the interface a priori 
undetermined.

In general, cyclone-like vortices are not easily tractable. 
However, one can use axisymmetric flows to approximate 
models of vortices such as the ones introduced by Cullen.  
In the literature, these flows provide an idealized form of the 
so-called primary circulations:

                                  

   and                        on Dξ      (1)

Here, θ denotes the temperature inside the vortex while 
θ0 is the ambient temperature out the vorted assumed to 
be constant and 𝑔 is the gravity. The equations above are 
considered on a free boundary domain representing the 
vortex:
           (2)

where the free boundary is described by a function ξ. 
Additionally, the pressure φ is required to vanish on the 
free boundary of Dξ. To ensure the stability of the vortex 
one imposes the condition that a variant of the pressure 
term, namely                           is strictly convex. The primary 
circulation helps understand fundamental structures of 
tropical cyclones and describes the rotational component of 
these vortices, which involves the angular velocity 𝑢 and the 
Coriolis parameter Ω. The quantities θ, 𝑢, φ and ξ form the 
unknowns of the problem in (1) and (2). We are interested in 
the question of existence and regularity of a stable solution. 
In the set of transformed variables                                                  
we set,
   
   and        (3) 

Assuming enough regularity, it turns out that the problem of 
existence of stable axisymmetric flows can be formulated as 
a free boundary Monge-Ampere equation of the form

            
            (4)

where f(𝓍1) = Ω2/2(1 − 2𝓍1), and the density functions σ and 
e(𝓍1)=1/(1 − 2𝓍1)2 satisfy the compatibility condition

with ∑ a bounded set, Λb = {(𝓍1, 𝓍2) : 0 ≤ 𝓍1 ≤ 1, 1 ≤ 𝓍2 ≤ b(𝓍1)} 
and b < 1/2. The system of equations (4) is said to have a weak 
solution in the sense of Brenier if P#eχΛb = σ  holds, along 
with the third condition of (4). The condition P#exΛb = σ 
means that
 

Although Monge-Ampere equations have been extensively 
studied, the novelty of problems (4) lies in the treatment 
of the free boundary of Λb. To examine the existence and 
regularity of solutions for the class of Monge-Ampere 
equations aforementioned, we resort to the theory of 
optimal transport where the total energy of the vortex can be 
expressed as 

 
The supremum is taken over the set 𝓒consisting of all 
continuous functions (P,Ψ) satisfying P(𝓍) + Ψ(𝓎) ≥ �𝓍, 𝓎� 
and ℋ0 is the set of Borel functions b : [0,1] � [0,1/2). The 
problem (5) has a maximiser (P0,Ψ0) ∈ 𝓒 where P0,Ψ0 are 
Legendre transform of each other and the minimizer b0 ∈ ℋ0 

bounded away from 1/2 in the second term of the functional 
in (5). If sptσ ⊂ ℝ+ × ℝ+ then the Euler-Lagrange equation of 
(5) at (P0,Ψ0) yields that 
   
    P#eχΛb = σ                                                   (6)
and 

whenever b0 (𝓍2) > ) for 𝓍2  ∈ [0,1]. It follows that (P0,Ψ0, b0) 
solves (4) in the sense of Brenier. Furthermore, the boundary 
∂Λb0 is continuous and there exists dual λ > 0 such that 
λ ≤ e ≤ 1/λ on Λb0. The question of the regularity of the 
solution and its dual Legendre transform is important for 
further understanding of the dynamics of tropical cyclones. 

To address the regularity issue, we assume that sptσ ⊂ ∑ 
and that λ ≤ σ ≤ 1/λ on ∑. If ∑ is assumed convex that P0 
is strictly convex and the regularity theory developed by 
Caffarelli ensures that P0 is C    . In the absence of convexity 
of the domain ∑, we rely on the theory developed by Figalli. 
In that case, we strengthen the assumption on the domain ∑ 
by requiring that the boundary ∂ ∑  is continuous. Then, there 
exist two open sets ∑ ⊂ ∑ and Λ ⊂ Λb0 with 𝓛2 (∑\ ∑) = 𝓛2 

(Λb\ Λ) = 0 such that P0 ∈ C1 (Λ), P0 is a homeomorphism 
between Λ and ∑, and

           
           (7)

in the sense of the Alexandrov.

Dξ = {(𝑟, z):0 ≤ z ≤ 1, 1 ≤ r ≤ ξ( z)}

𝑢2  

+ 2Ωu =
 ∂ φ 

r       ∂r
   θ  

= 
 ∂ φ    

   θ0        ∂z
ɡ

φ(r, z)+Ω2r2/2,

2𝓍1 = 1 − 2𝑟−2 and 𝓍2 = 𝑧, 

P(𝓍1,𝓍2) = φ(r, z) + Ω
2r2 

       2
2b(𝓍2) = 1 –  2/ξ2(z)

�
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The clever princess
In a kingdom ruled by an evil king his beautiful and clever 
daughter has come of age. Her suitors come from far and wide 
to undergo the canonical trials for her hand: slaying dragons, 
rescuing damsels, etc. One suitor, a well-connected but not 
very bright prince, has the support of the king.
Finally the suitors have been reduced to a small number 
for the deciding trial which of course includes the king’s 
favourite, but also a candidate who has won favour with the 
princess for his shrewdness and commitment to befriending 
dragons. After consulting with his advisors the king suggests 
to his daughter a protocol for the final trial, which he assures 
her will put his favourite at a disadvantage and so should be 
acceptable to her.

He suggests to her that his favourite stand in the centre 
of the hall facing the throne. Behind him stands the next 
candidate, the third behind him and so on in a line, so that 
each candidate can see only those in front of him. The 
king proposes to tell the candidates that he is about to put 
a coronet on each, starting from the rear, which is either 
gold or silver, at least one of which is gold. The first to shout 
out correctly the colour of his own coronet wins it and the 
princess. He tells his daughter that he will in fact put a gold 
coronet on each.

Naturally the candidates are keen but honest, so shout out if 
and only if they identify their coronet. The king elaborates 
to his daughter that his own favourite would see none of the 
others and so must be at a disadvantage. Does she welcome 
his suggested protocol?

The princess reflects for a minute, imagining the situation 
of just three candidates. The front candidate could reason 
that if his coronet were silver, then the candidate directly 
behind him would reason that if his were silver then the 
third candidate would see two silver coronets and be able to 
identify his as gold. When no identification is forthcoming 
the front candidate knows his assumption that his coronet is 
silver must be wrong, and so is able to identify it correctly as 
gold. Moreover he is the only one able to do so because even 
after the front candidate identifies his coronet, there are 
situations in which the others could be either gold or silver.

Used to dealing with her father, the clever princess replies 
that she welcomes his protocol but sees no reason to put 
one candidate at a ‘disadvantage’. Why not arrange them 
in a circle, so that each can see the others? Since that is 
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As users of the web we are reliant on distributed systems 
and take for granted their advantage over the centralised 
systems we learn to program at AIMS: their eciency due 
to concurrency, shared resources and lack of a central 
bottleneck; their fault tolerance due to robustness against 
failednodes; but their lack of authoritarianism and openness 
towards location, implementation, interfaces and scalability.

However with that latitude distributed systems have to 
overcome the difficulties of privacy, security, accountability 
and so on. In this paper we report work concerning privacy 
in networks (a) composed of devices with limited computing 
power (the internet of things), and (b) in a distributed 
auction. 

Our theory unfolds at the level of system design and so 
applies to any particular implementation. A system is 
specified in terms of its behaviour from input and state 
before, to output and state after. We extend that by exploiting 
epistemic logic to express who knows what when.

Epistemic logic
As usual, standard logic is extended with a modal operator 
KA for each agent A so that KAφ means agent A knows 
property φ. Epistemic logic is distinguished from a logic of 
belief by knowing only valid properties:

                        if KAφ then ⊢ φ .                                          (1)

Fundamental properties of the modal operator also include 
its closure under logical consequence
    
  if KAφ and ⊢ (φ ⇒ψ) then KAψ         (2) 

and under conjunction

        if KAφ and KAψ then KA (φ ∧ ψ) .                       (3)

If the predicate is simply the value of a variable, we say that 
the agent knows that variable: KA𝓍 means that for some 
value t, KA(𝓍 = t).

A predicate φ is common knowledge, Cφ, means that each 
agent knows φ, each agent knows that each agent knows φ 
and so on.

Here is an example which demonstrates the importance and 
style of epistemic reasoning in a distributed system simplified 
by having synchronous fault-free communications.

Distributing private 
information
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symmetrical all have an equal chance. Naturally she thinks 
to herself that the quickest has an advantage, by reasoning 
as she has just done.

Outmanoeuvred, the king agrees. We leave its conclusion to 
the reader.

Proof
In reasoning about what an agent knows in a distributed 
system, care must be taken to use global information only if 
it is available to that agent. In this case, communication is 
synchronous: by word of mouth or by sight. When the king 
announces to the assembled contestants that all coronets are 
gold or silver and at least one is gold, that becomes common 
knowledge.

Assuming the contestants in the final trial are i : [1, n], and 
the variable ci : {g, s} represents the type of i’s coronet, g for 
gold and s for silver,

                         C (∀ i · ci ∈ {g, s} ∧ ∃ j · cj = g) .                      (4)

Each contestant knows the linear configuration, and each 
observes the coronets in front of it but not the others:

                   C (∀ i · (∀ j < i · Ki cj ) ∧ (∀ j ≥ i · ¬Ki cj)) .            (5)

When a contestant identifies his coronet he shouts out loud 
and so that fact becomes common knowledge

                      ∀ i · Ki ci ⇒ C (Ki ci) .                             (6)

That models the system epistemically. Now, what about the 
princess’s argument? And why is it necessary for (4) to be 
common knowledge when each candidate knows that there 
is at least one gold coronet by sight?

From (4) and (5) candidate 1 knows

     K1(c1=s ⇒ K2(c2=s ⇒ · · · ⇒ (Kn cn )) · · ·) .

He then reasons (taking propositional reasoning, like contra-
positive, for granted), by (4) and since K1K2 · · · (¬Kn cn) by 
(6), using (2)

 K1(c1=s ⇒ K2(c2=s ⇒  · · · ⇒ (Kn−1cn−1) · · ·)) 

where again the last implicand turns out to be false. 
Iterating, eventually
   K1c1

from which it follows that the first candidate identifies his 
coronet correctly by (2) and (1).

Furthermore examples consistent with the model show that 
any other candidate could have either kind of coronet.

To answer our question, Agent 1 has relied on the common 
knowledge in (4) to depth n, Agent 2 has relied on it to depth 
n−1 and so on, far more than the depth 1 resulting from 
each’s observation.

Security of IoT
In realistic networks communication is asynchronous, error 
prone and beset by eavesdroppers. So authenticating one’s 
correspondent for a private conversation is a fundamental 
difficulty, specially when agreement is required on secret 
encryption keys. We say that agents i and j are authenticated 
(for a given conversation) iff each is certain of the identity of 
the other. That may be achieved, in a distributed setting, by 
exploiting the uniqueness of (public, private) key pairs (to 
within acceptably high probability as usual) to sign a nonce 
ni,j so that

Auth(i, j ) := ∃ ni,j · (Ki Kj ni,j ) ∧ (Kj Ki ni,j) ∧ (Kk ni,j ⇒ k = i, j ) .

In long-range wide-area networks (LoRaWAN) composed 
of devices like sensors, computation and so use of public 
key encryption is limited. In addition to authentication 
(you want to ensure noone else’s phone can unlock your 
garage) a fresh key is used to encrypt each message, and 
both recipients have to know which key to expect, but if an 
eavesdropper is able to discover a key keyt at used at session 
t, they must not be able to calculate previous or future keys, 
so-called forward and future secrecy:

             ¬(∀ k ≠ i, j · Kk keyt ⇒ ∀ u ≠ t · Kk keyu ) .

The first author has proved that the LoRaWAN protocol 
achieves authentication but not forward or future secrecy, 
and has suggested appropriate modifications.

Auctions
In a sealed bid auction, bidders submit sealed bids to the 
auctioneer who compares them and announces the winner 
(after resolving any ties, which we overlook here). That can 
be distributed by each bidder broadcasting a commit to a bid 
which acts as the sealed bid and, when the auction closes, 
broadcasting a matching reveal, from which all bidders can 
evaluate the winner by comparison, without the need for a 
central process.

Bidder i’s commit consists of the bid di hashed with a one-
way function hi which achieves

           C (∀ j  ≠ i · Kj hi (di ) ∧ ¬Kj di ) .

After i reveals di and hi , each bidder is able to confirm that 
the reveal matches the commit in which case

         C (∀ i, j · Kj di )

and all bidders decide the winner consistently.

Distributed auctions and their dominant strategies have been 
studied by the second author.
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